Premium
A cytotoxic leachable compound from single‐use bioprocess equipment that causes poor cell growth performance
Author(s) -
Hammond Matthew,
Marghitoiu Liliana,
Lee Hans,
Perez Lourdes,
Rogers Gary,
NashedSamuel Yasser,
Nunn Heather,
Kline Sally
Publication year - 2014
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.1869
Subject(s) - bioprocess , biochemical engineering , leaching (pedology) , microbiology and biotechnology , process engineering , production (economics) , computer science , chemistry , environmental science , biology , engineering , chemical engineering , soil science , soil water , macroeconomics , economics
A current trend in the production of biopharmaceuticals is the replacement of fixed stainless steel fluid‐handling units with disposable plastic bags. Such single‐use systems (SUS) offer numerous advantages, but also introduce a new set of materials into the production process and consequently expose biomanufacturers to a new set of risks related to those materials, not to mention reliance on an entirely new supply chain. In the course of developing and conducting a cell‐growth‐based test for suitability of disposable plastic components destined for use in cell culture operations, we discovered that the cytotoxic compound bis(2,4‐di‐tert‐butylphenyl)phosphate (bDtBPP) leaches out of certain bags and into cell culture media in concentrations that are deleterious to cell growth. Specifically, media held in certain bags for several days at 37°C was found to contain bDtBPP, and use of those held‐media samples in cell growth experiments provides data that overlap neatly with cell growth experiments using media spiked directly with bDtBPP, proving that bDtBPP leaching is responsible for the reduced growth attributable to those SUS bags. Overall, this issue represents a risk to the production of biopharmaceuticals in SUS, a risk that must be managed by diligent collaboration among companies along the entire supply chain for SUS components. © 2014 American Institute of Chemical Engineers Biotechnol. Prog ., 30:332–337, 2014