z-logo
Premium
Optimization of a two‐step process comprising lipase catalysis and thermal cyclization improves the efficiency of synthesis of six‐membered cyclic carbonate from trimethylolpropane and dimethylcarbonate
Author(s) -
Bornadel Amin,
HattiKaul Rajni,
Sörensen Kent,
Lundmark Stefan,
Pyo SangHyun
Publication year - 2012
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.1662
Subject(s) - trimethylolpropane , dimethyl carbonate , chemistry , diethyl carbonate , candida antarctica , transesterification , yield (engineering) , isocyanate , catalysis , lipase , carbonate , organic chemistry , ethylene carbonate , materials science , polyurethane , electrode , electrolyte , metallurgy , enzyme
Six‐membered cyclic carbonates are potential monomers for phosgene and/or isocyanate free polycarbonates and polyurethanes via ring‐opening polymerization. A two‐step process for their synthesis comprising lipase‐catalyzed transesterification of a polyol, trimethylolpropane (TMP) with dimethylcarbonate (DMC) in a solvent‐free system followed by thermal cyclization was optimized to improve process efficiency and selectivity. Using full factorial designed experiments and partial least squares (PLS) modeling for the reaction catalyzed by Novozym®435 (N435; immobilized Candida antarctica lipase B), the optimum conditions for obtaining either high proportion of monocarbonated TMP and TMP‐cyclic‐carbonate (3 and 4), or dicarbonated TMP and monocarbonated TMP‐cyclic‐carbonate (5 and 6) were found. The PLS model predicted that the reactions using 15%–20% (w/w) N435 at DMC:TMP molar ratio of 10–30 can reach about 65% total yield of 3 and 4 within 10 h, and 65%–70% total yield of 5 and 6 within 32–37 h, respectively. High consistency between the predicted results and empirical data was shown with 66.1% yield of 3 and 4 at 7 h and 67.4% yield of 5 and 6 at 35 h, using 18% (w/w) biocatalyst and DMC:TMP molar ratio of 20. Thermal cyclization of the product from 7 h reaction, at 110°C in the presence of acetonitrile increased the overall yield of cyclic carbonate 4 from about 2% to more than 75% within 24 h. N435 was reused for five consecutive batches, 10 h each, to give 3+4 with a yield of about 65% in each run. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here