Premium
Investigating the use of column inserts to achieve better chromatographic bed support
Author(s) -
Lan Tian,
Gerontas Spyridon,
Smith Graeme R.,
Langdon John,
Ward John M.,
TitchenerHooker Nigel J.
Publication year - 2012
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.1597
Subject(s) - insert (composites) , column (typography) , drag , flow (mathematics) , particle (ecology) , chromatography , dispersion (optics) , position (finance) , porosity , mechanics , materials science , chemistry , composite material , structural engineering , engineering , geology , physics , optics , oceanography , finance , connection (principal bundle) , economics
Chromatography plays an important role in the downstream processing of proteins. Over the past years, there has been a steady move toward the adoption of more rigid, porous particles to combine ease of manufacture with increased levels of productivity. The latter is still constrained by the onset of compression where the level of wall support becomes incapable of withstanding flow‐induced particle drag. In this study, we investigate how, by the installation of cylindrical column inserts, it is possible to enhance the level of wall support. Experiments were conducted to examine the effect of the position of the insert in the column, and also of the insert dimensions on the critical velocity at which the onset of compression occurs. It was found that when installed at the bottom of the column, inserts can provide up to a 20% increase in critical velocity without significantly affecting column hydrodynamics, as measured by the level of axial dispersion. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012