z-logo
Premium
Simultaneous extraction and concentration of penicillin G by hollow fiber renewal liquid membrane
Author(s) -
Ren Zhongqi,
Zhang Weidong,
Lv Yuanyuan,
Li Jing
Publication year - 2009
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1002/btpr.152
Subject(s) - mass transfer , chemistry , aqueous solution , mass transfer coefficient , stripping (fiber) , hollow fiber membrane , chromatography , extraction (chemistry) , aqueous two phase system , phase (matter) , volumetric flow rate , membrane , partition coefficient , analytical chemistry (journal) , materials science , thermodynamics , organic chemistry , biochemistry , physics , composite material
In this article, hollow fiber renewal liquid membrane (HFRLM) technique was used for recovery of penicillin G from aqueous solution. The organic solution of 7 vol % di‐n‐octylamine (DOA) + 30 vol % iso‐octanol + kerosene was used as liquid membrane phase, and Na 2 CO 3 aqueous solution was used as stripping phase. Experiments were performed as a function of carrier concentration in the organic phase, organic/aqueous volume ratio, pH, and initial penicillin G concentration in the feed phase, pH in the stripping phase, flow rates, etc. The results showed that the HFRLM process was stable and could carry out simultaneous extraction and concentration of penicillin G from aqueous solutions. As a carrier facilitated transport process, the addition of DOA in organic phase could greatly enhance the mass transfer rate; and there was a favorable organic/aqueous volume ratio of 1:20 to 1:30 for this system. The mass transfer flux and overall mass transfer coefficient increased with decreasing pH in the feed phase and increasing pH in the stripping phase, because of variation of the mass transfer driving force caused by pH gradient and distribution equilibrium. The flow rate of the shell side had significant influence on the mass transfer performance, whereas the effect of flow rate of lumen side on the mass transfer performance was slight because of the mass transfer intensification of renewal effect in the lumen side. The results indicated that the HFRLM process was a promising method for the recovery of penicillin G from aqueous solutions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here