
Microfluidic co‐culture devices to assess penetration of nanoparticles into cancer cell mass
Author(s) -
Jarvis Maria,
Arnold Michael,
Ott Jenna,
Pant Kapil,
Prabhakarpandian Balabhaskar,
Mitragotri Samir
Publication year - 2017
Publication title -
bioengineering and translational medicine
Language(s) - English
Resource type - Journals
ISSN - 2380-6761
DOI - 10.1002/btm2.10079
Subject(s) - camptothecin , in vivo , nanotechnology , in vitro , penetration (warfare) , nanoparticle , cell , chemistry , nanocarriers , biophysics , cancer cell , materials science , cancer , biology , biochemistry , microbiology and biotechnology , genetics , operations research , engineering
In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle‐based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co‐culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface‐functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co‐culture devices to assess nanoparticle‐cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.