
Structural disconnectivity from paramagnetic rim lesions is related to disability in multiple sclerosis
Author(s) -
Tozlu Ceren,
Jamison Keith,
Nguyen Thanh,
Zinger Nicole,
Kaunzner Ulrike,
Pandya Sneha,
Wang Yi,
Gauthier Susan,
Kuceyeski Amy
Publication year - 2021
Publication title -
brain and behavior
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.915
H-Index - 41
ISSN - 2162-3279
DOI - 10.1002/brb3.2353
Subject(s) - lesion , multiple sclerosis , expanded disability status scale , white matter , medicine , corpus callosum , magnetic resonance imaging , pathology , radiology , psychiatry
Background In people with multiple sclerosis (pwMS), lesions with a hyperintense rim (rim+) on Quantitative Susceptibility Mapping (QSM) have been shown to have greater myelin damage compared to rim‐ lesions, but their association with disability has not yet been investigated. Furthermore, how QSM rim+ and rim‐ lesions differentially impact disability through their disruptions to structural connectivity has not been explored. We test the hypothesis that structural disconnectivity due to rim+ lesions is more predictive of disability compared to structural disconnectivity due to rim‐ lesions. Methods Ninety‐six pwMS were included in our study. Individuals with Expanded Disability Status Scale (EDSS) <2 were considered to have lower disability (n = 59). For each gray matter region, a Change in Connectivity (ChaCo) score, that is, the percent of connecting streamlines also passing through a rim‐ or rim+ lesion, was computed. Adaptive Boosting was used to classify the pwMS into lower versus greater disability groups based on ChaCo scores from rim+ and rim‐ lesions. Classification performance was assessed using the area under ROC curve (AUC). Results The model based on ChaCo from rim+ lesions outperformed the model based on ChaCo from rim‐ lesions (AUC = 0.67 vs 0.63, p ‐value < .05). The left thalamus and left cerebellum were the most important regions in classifying pwMS into disability categories. Conclusion rim+ lesions may be more influential on disability through their disruptions to the structural connectome than rim‐ lesions. This study provides a deeper understanding of how rim+ lesion location/size and resulting disruption to the structural connectome can contribute to MS‐related disability.