Premium
Screening potential antagonists of epidermal growth factor receptor from Marsdenia tenacissima via cell membrane chromatography model assisted by HPLC–ESI–IT–TOF–MS
Author(s) -
Lv Yanni,
Shi Xianpeng,
Fu Jia,
Jia Qianqian,
Lin Yuanyuan,
Wang Hongying,
Yang Xin,
Han Shengli
Publication year - 2019
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.4569
Subject(s) - chemistry , gefitinib , epidermal growth factor receptor , docking (animal) , mtt assay , high performance liquid chromatography , pharmacology , chromatography , cell growth , receptor , biochemistry , medicine , nursing
Marsdenia tenacissima , or Tongguanteng in Chinese, is a traditional Chinese herb and has a broad application in clinical practice for its pharmacological effects of treating asthma, pneumonia, tonsillitis, pharyngitis tumors, etc. However, few studies have reported the screening of the active components of this medicine for tumor therapy. In this work, a two‐dimensional analytical system was developed to screen antagonists of epidermal growth factor receptor (EGFR) from M. tenacissima . A fraction was retained on the EGFR cell membrane chromatography (CMC) column, separated and identified as tenacissoside G (TG), tenacissoside H (TH) and tenacissoside I (TI) by two‐dimensional HPLC–IT–TOF–MS. Molecular docking and 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide (MTT) assay were carried out to assess the activity of TS (including TG, TH and TI). Molecular docking results showed that the binding mode of TS on EGFR is similar to that of gefitinib. The MTT assay demonstrated that gefitinib and TS (especially TI) could inhibit the growth of EGFR highly expressed cell lines in a dose‐dependent manner in the range of 5–50 μmol/L. In conclusion, the two‐dimensional EGFR/CMC–HPLC–IT–TOF–MS system could be a useful approach in drug discovery from traditional Chinese medicines for searching for potential antitumor candidates.