z-logo
Premium
Buprofezin dissipation and safety assessment in open field cabbage and cauliflower using GC/ITMS employing an analyte protectant
Author(s) -
Abdallah Osama,
El Agamy Moustafa,
Abdelraheem Ehab,
Malhat Farag
Publication year - 2019
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.4492
Subject(s) - chemistry , quechers , analyte , chromatography , detection limit , residue (chemistry) , calibration curve , maximum residue limit , horticulture , pesticide , pesticide residue , agronomy , biology , biochemistry
Abstract An analytical method for the determination of buprofezin residues in cabbage and cauliflower was developed and validated using gas chromatography with ion trap mass spectrometry. The analyte protectant d ‐sorbitol was used at a concentration level of 0.5 mg mL −1 in acetonitrile instead of in matrix for constructing the calibration curves of the buprofezin standard. The average recoveries ranged from 91.3 to 96.8%, with an RSD of ≤2.7%. The limits of detection and quantitation of the method in cabbage and cauliflower were 1.3, 1.7 and 4.3, 6.2 μg kg −1 , respectively. The residual levels and dissipation kinetics of buprofezin 25% wettabe powder in cabbage and cauliflower cultivated under open field conditions was investigated at the single (T1) and double (T2) recommended rates of application. Half‐life periods were found to be 1.73 and 2.1 days in cabbage, whereas in cauliflower, these values were 1.85 and 2.36 days at T1 and T2, respectively. Based on the dissipation study, and the maximum residue limit value of 0.05 mg kg −1 , the proposed pre‐harvest interval of buprofezin in cabbage was 3–6 days and that in cauliflower was 4–10 days. The results showed that buprofezin is safe for application at both recommended application rates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here