z-logo
Premium
Determination of four antiepileptic drugs in plasma using ultra‐performance liquid chromatography with mass detection technique
Author(s) -
Hassib Sonia T.,
Hashem Hanaa M.A.,
Mahrouse Marianne A.,
Mostafa Eman A.
Publication year - 2018
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.4253
Subject(s) - chemistry , chromatography , therapeutic drug monitoring , bioanalysis , phenytoin , carbamazepine , bioequivalence , microdose , high performance liquid chromatography , electrospray ionization , phenobarbital , mass spectrometry , drug , pharmacology , pharmacokinetics , epilepsy , medicine , neuroscience , biology
Status epilepticus (SE) is considered the second most frequent neurological emergency. Its therapeutic management is performed using sequential antiepileptic drug regimens. Diazepam (DIA), midazolam (MID), phenytoin (PHT) and phenobarbital (PB) are four drugs of different classes used sequentially in the management of SE. A sensitive, selective, accurate and precise method was developed and validated for simultaneous determination of the four antiepileptic drugs in human plasma. Their separation and quantification were achieved using ultra‐performance liquid chromatography (UPLC) with mass detection using carbamazepine as internal standard (IS). For the first three drugs and the IS, UPLC–MS/MS with electrospray ionization working in multiple reaction monitoring mode was used at the following transitions: m/z 285 → 193 for DIA; m/z 326 → 291 for MID; m/z 253 → 182 for PHT; and m/z 237 → 194, 237 → 192 for IS. For the fourth drug (PB), a molecular ion peak of PB [M + H] + at m/z 233 was used for its quantitation. The method was linear over concentration ranges 5–500 ng/mL for DIA and MID and 0.25–20 μg/mL for PHT and PB. Bioanalytical validation of the developed method was carried out according to European Medicines Agency guidelines. The developed method can be applied for routine drug analysis, therapeutic drug monitoring and bioequivalence studies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here