z-logo
Premium
Retention of glycopeptides analyzed using hydrophilic interaction chromatography is influenced by charge and carbon chain length of ion‐pairing reagent for mobile phase
Author(s) -
Furuki Kenichiro,
Toyo'oka Toshimasa
Publication year - 2017
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3988
Subject(s) - chemistry , reagent , glycopeptide , glycan , chromatography , hydrophilic interaction chromatography , mass spectrometry , electrospray ionization , reversed phase chromatography , high performance liquid chromatography , glycoprotein , organic chemistry , biochemistry , antibiotics
Characterization of the glycans of glycoproteins is essential for the development and production of biologics. Numerous methods are available for analyzing the glycans of glycoproteins directly and labeled glycans. Nevertheless, glycopeptides are difficult to resolve because of their exceptional complexity and the microheterogeneity of glycans. These properties represent technical challenges to efforts to insure the accurate characterization of biopharmaceuticals to comply with regulatory requirements. Therefore, we investigated the retention behavior of peptides and glycopeptides in hydrophilic interaction chromatography‐mode HPLC in the presence of ion‐pairing reagents. Anionic ion‐pairing reagents decreased the retention times of glycopeptides and improved resolution in the presence of higher concentrations or hydrophobicities of ion‐pairing reagent. Anionic ion‐pairing reagents increased retention times of larger glycans because of their increased hydrophilicity. In contrast, in the presence of cationic ion‐pairing reagents, the retention times of glycopeptides with greater numbers of sialic acid residues decreased. It is appropriate to add an anionic ion‐pairing reagent to the mobile phase for good separation of glycopeptides. The collision cross‐sectional area values of glycopeptides determined using electrospray ionization‐ion mobility spectrometry‐mass spectrometry correlated with retention times. These findings support the implementation of hydrophilic interaction chromatography‐mode HPLC to improve the characterization of glycosylated biopharmaceuticals.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here