z-logo
Premium
A simple and selective UHPLC–MS/MS method for quantification of plantagoguanidinic acid in rat plasma and its application to a pharmacokinetic study
Author(s) -
Zhong Ruijian,
Yu Yan,
Zheng Yangbing,
Chen Weikang,
Zhou Guoping,
Ding Jianhong,
Yuan Mingming
Publication year - 2017
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3929
Subject(s) - chemistry , chromatography , formic acid , pharmacokinetics , selected reaction monitoring , electrospray ionization , calibration curve , bioavailability , detection limit , elution , mass spectrometry , tandem mass spectrometry , pharmacology , medicine
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C 18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL ( r  = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom