Premium
Determination of chloramphenicol in biological matrices by solid‐phase membrane micro‐tip extraction and capillary electrophoresis
Author(s) -
Hussain Afzal,
Alajmi Mohammed F.,
Ali Imran
Publication year - 2016
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3769
Subject(s) - capillary electrophoresis , chemistry , chromatography , chloramphenicol , electrophoresis , extraction (chemistry) , capillary action , membrane , electrolyte , detection limit , solid phase extraction , acetonitrile , analytical chemistry (journal) , electrode , biochemistry , materials science , composite material , antibiotics
Solid‐phase membrane micro‐tip extraction (SPMMTE) and capillary electrophoresis (CE) methods were developed and validated for analysis of chloramphenicol in human plasma and urine samples. Iron composite nanoparticles were prepared using green technology. CE was carried out using a silica capillary (60 cm × 50 μm i.d.), phosphate buffer (50 m m , 8.0 pH)–acetonitrile (95:5, v/v) as the background electrolyte, 10 kV voltage, 280 nm detection, 20 s injection time and 27 ± 1°C temperature. Frusemide was used as an internal standard. The values of migration time, electrophoretic mobility, electrophoretic velocity and theoretical plates of chloramphenicol were 12.254 min, 4.44 × 10, 7.41 × 10 and 11,227. The limits of detection and quantitation of chloramphenicol were 0.1 and 1.0 μg/mL. Recovery of chloramphenicol in the standard solution was 95%. Solid‐phase membrane micro‐tip extraction and capillary electrophoresis methods may be used to analyze chloramphenicol in human plasma and urine samples of any patient.