z-logo
Premium
A sensitive and selective LC‐MS/MS method for the quantitative determination of segetalin A from the plasma of rats
Author(s) -
Wang Jianmeng,
Zhang Nan,
Pang Li,
Xu Dahai,
Yan Weiwei,
Wu Jiang,
Chen Haiyan
Publication year - 2016
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3602
Subject(s) - chemistry , chromatography , calibration curve , pharmacokinetics , formic acid , analyte , detection limit , selected reaction monitoring , quantitative analysis (chemistry) , high performance liquid chromatography , elution , mass spectrometry , tandem mass spectrometry , pharmacology , medicine
A sensitive and selective LC‐MS/MS method was developed and validated for the determination and pharmacokinetic investigation of segetalin A in rat plasma. Sample preparation was accomplished through a simple SPE procedure for the removal and preconcentration of the analyte and IS. Plasma samples were separated by HPLC on a Symmetry C 18 column using a mobile phase consisting of methanol and 0.1% formic acid in water (70:30, v/v) with isocratic elution. The quantification was performed using multiple reaction monitoring with the transitions m/z 610.3 → 511.2 for segetalin A and m/z 779.4 → 751.4 for IS, respectively. The calibration curve was linear over the range of 8.0–4000 ng/mL with a limit of quantitation (LOQ) of 8.0 ng/mL. This method was applied in a pharmacokinetic study of segetalin A in rats. For intravenous (i.v.) administration, the plasma concentrations of segetalin A decreased quickly ( t 1/2 z , 1.31 ± 0.341 h). For oral administration, the plasma concentrations of segetalin A increased to a peak value at 1.50 ± 0.577 h, followed by a gradual decrease to the LOQ in 12 h. The mean AUC values after i.v. and oral administration were 553 ± 105 and 1482 ± 110 ng h/mL, respectively. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom