z-logo
Premium
Development and application of an analytical method for curdione quantification in pregnant sprague–dawley rats by LC‐MS/MS
Author(s) -
Meng Xiang,
Zhang Ting,
Li Ying,
Pan Qi,
Jiang Juan,
Luo Yongwei,
Chong Liming,
Yang Yang,
Xu Sichong,
Zhou Li,
Sun Zuyue
Publication year - 2015
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3449
Subject(s) - chemistry , chromatography , formic acid , glimepiride , detection limit , medicine , type 2 diabetes , diabetes mellitus , endocrinology
The vaginal administration route suffers from relatively low absorption efficiency, which may hinder the identification of the toxicokinetics of curdione in pregnant women. A sensitive analytical method for determining the plasma concentration of curdione was developed and applied in the determination of curdione in pregnant Sprague–Dawley rats as a simulated model. Glimepiride was used as an internal standard and chromatographic separation was achieved on a Capcell Pak C 18 MGIII column. A gradient elution profile with 0.5% formic acid (A)–0.5% formic acid–acetonitrile (B) was selected as mobile phase. The selected reaction monitoring mode was used for quantification based on the target fragment ions m / z 237.2 to m / z 135.1 for curdione and m / z 491.3 to m / z 352.1 for the glimepiride. The standard curve was linear over the range of 0.5–500 ng/mL for curdione in rat plasma and yielded a consistent peak pattern, even at the lower limit of quantitation of 0.5 ng/mL. The retention times of curdione and IS were 6.55 and 6.59 min, respectively. The mean recovery of curdione in rat plasma was 95.5–101.1%. The intra‐day and inter‐day precisions were between 2.35 and 9.08%. This LC‐MS/MS method provides a simple and sensitive means for determining the plasma concentration. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom