z-logo
Premium
A validated sensitive HPLC‐MS/MS method for quantification of a potential hypnotic drug MT502 and its application to a pharmacokinetic study in rat
Author(s) -
Zhang FangFang,
Cheng Ying,
Wan Ning,
Jing ZiWei,
Ju Jia,
Jia YiYang,
Zhou SiYuan,
Zhang BangLe
Publication year - 2015
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3440
Subject(s) - chromatography , chemistry , pharmacokinetics , formic acid , electrospray ionization , selected reaction monitoring , high performance liquid chromatography , mass spectrometry , extraction (chemistry) , detection limit , triple quadrupole mass spectrometer , tandem mass spectrometry , pharmacology , medicine
A rapid, sensitive HPLC‐MS/MS method was established and validated to assay the concentration and pharmacokinetic profile of MT502, a promising hypnotic drug. The plasma sample was treated by a liquid–liquid extraction and separated on a kromasil C 18 column at an isocratic flow rate of 0.3 mL/min using methanol and 0.1% formic acid in water (75:25, v/v) as mobile phase. The mass spectrometric detection was carried out using a triple‐quadrupole system via positive electrospray ionization. Multiple reaction monitoring was used for quantitation of m / z transitions from 261 to 188 for MT502 and from 247 to 188 for MT501 (internal standard). Good linearity was achieved over the concentration range of 1–1000 ng/mL and 10–5000 ng/mL with lower limit of quantification of 0.30 and 0.80 ng/mL. The intra‐ and inter‐day precisions, accuracy, recovery and stability were satisfactory for the concentration test. The above method can be used for a pharmacokinetic study at doses of 1, 5 and 20 mg/kg. Results indicated that MT502 had rapid absorption, rapid elimination and linear pharmacokinetic properties within the range of the tested intragastric dose. This developed HPLC‐MS/MS method was successfully applied to a pharmacokinetic study of MT502 for the first time and was demonstrated to be simple and sensitive. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom