z-logo
Premium
Validation of a hydrophilic interaction ultra‐performance liquid chromatography–tandem mass spectrometry method for the determination of gemcitabine in human plasma with tetrahydrouridine
Author(s) -
Mano Yuji,
Sakamaki Kenji,
Ueno Takuya,
Kita Kenji,
Ishii Takuho,
Hotta Koichiro,
Kusano Kazutomi
Publication year - 2015
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3429
Subject(s) - chromatography , chemistry , bioanalysis , electrospray ionization , gemcitabine , reproducibility , tandem mass spectrometry , protein precipitation , selected reaction monitoring , mass spectrometry , liquid chromatography–mass spectrometry , high performance liquid chromatography , medicine , surgery , chemotherapy
A simple and reproducible bioanalytical method for the determination of gemcitabine in human plasma treated with tetrahydrouridine (THU) was developed and validated using a hydrophilic interaction ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS). To prevent deamination of gemcitabine, blood was treated with THU, and the plasma samples obtained after centrifugation were used in this study. Gemcitabine and gemcitabine‐ 13 C, 15 N 2 used as an internal standard, were extracted from human plasma treated with THU using a 96‐well Hybrid SPE‐Precipitation plate. Extracts were chromatographed on a hydrophilic interaction chromatography column with isocratic elution. Detection was performed using Quattro Premier with positive electrospray ionization multiple reaction monitoring mode. The standard curve ranged from 10 to 10,000 ng/mL without carryover. No significant interferences were detected in blank plasma and no interferences by 2′‐2′‐difluoro‐2′‐deoxyuridine, a metabolite of gemcitabine. Accuracy and precision in the intra‐batch reproducibility study using quality control samples with three THU levels did not exceed ±5.4 and 7.3%, respectively, and the inter‐batch reproducibility results also met the criteria. Stability of gemcitabine was ensured in whole blood and plasma as well as stability of THU in solutions. The UPLC‐MS/MS method developed was successfully validated and can be applied for gemcitabine bioanalysis in clinical studies. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom