z-logo
Premium
High‐throughput salting‐out assisted liquid–liquid extraction with acetonitrile for the determination of anandamide in plasma of hemodialysis patients with liquid chromatography tandem mass spectrometry
Author(s) -
Xiong Xin,
Zhang Lei,
Cheng Litao,
Mao Wei
Publication year - 2015
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3425
Subject(s) - chemistry , chromatography , liquid chromatography–mass spectrometry , salting out , extraction (chemistry) , mass spectrometry , tandem mass spectrometry , liquid–liquid extraction , acetonitrile , repeatability , aqueous solution
Anandamide (AEA) is an endocannabinoid present in human plasma that is associated with several physiological functions and disease states. However, low AEA plasma levels pose challenges in terms of analytical characterization. Classical liquid‐based lipid extraction and solid‐phase extraction require complicated procedures and the drying down of relatively large volumes of solvents, making them unsuitable for high‐throughput analysis. Here a high‐throughput salting‐out assisted liquid–liquid extraction (SALLE) method with acetonitrile and mass spectrometry compatible salts for liquid chromatography–tandem mass spectrometry (LC‐MS/MS) analysis of AEA in human plasma has been developed and validated. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step, only 100 μL of plasma is required and minimal volumes of organic solvent are used. Good reproducibility, accuracy and precision were demonstrated during the method validation. The method is linear up to 10 ng/mL with a lower limit of quantitation of 0.1 ng/mL for AEA, the accuracy for AEA was from 93.3 to 96.7% and the precision was <8.57%. This new methodology was successfully applied to analysis of clinical samples from maintenance hemodialysis patients. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom