z-logo
Premium
Method development and validation study for quantitative determination of nifedipine and related substances by ultra‐high‐performance liquid chromatography
Author(s) -
GalanRodriguez Cristobal,
GonzálezÁlvarez Jaime,
VallsRemolí Màrius
Publication year - 2015
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3265
Subject(s) - chemistry , chromatography , nifedipine , repeatability , ammonium formate , high performance liquid chromatography , reproducibility , detection limit , resolution (logic) , analytical chemistry (journal) , organic chemistry , artificial intelligence , computer science , calcium
Abstract A novel stability‐indicating reversed phase ultra‐high performance liquid chromatography (UPLC) coupled photodiode array gradient method was developed for determination of the nifedipine and related compounds. Furthermore, based on the chromatographic conditions and forced degradation studies performed through the development of the related substances method a UPLC isocratic method was validated for the determination of the assay of this active substance. An Acquity Shield RP 18 (50 × 3.0 mm 1.7 µm) column was used for separation of nifedipine and its five potential impurities within 11 min, which is 5‐fold less than the official method. A mobile phase consisting of 10 m m ammonium formate (pH 4.5) and methanol, delivered at a flow rate 0.5 mL/min, was employed to achieve a minimum resolution of 2.0 for all consecutive pairs of compounds. The precision value expressed as percentage relative standard deviation for method repeatability and reproducibility was <5.0%. The recoveries for all the related compounds were in the range of 99–105.0%. Linearity was found to be acceptable over the concentration range of 0.25–1.5 µg/mL for nifedipine and its impurities. The limit of quantification for nifedipine was 0.05 µg/mL, which is much less than the European Pharmacopoeia method. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here