Premium
Studies on excretion kinetics of ten constituents in rat urine after oral administration of Shensong Yangxin Capsule by UPLC‐MS/MS
Author(s) -
Liu Minyan,
Li Song,
Zhao Shaohua,
Wang Hongtao,
Wang Hairong,
Tu Pengfei
Publication year - 2014
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.3064
Subject(s) - chemistry , chromatography , formic acid , electrospray ionization , mass spectrometry , high performance liquid chromatography , analyte , extraction (chemistry) , urine , selected reaction monitoring , elution , tandem mass spectrometry , biochemistry
A rapid and sensitive ultra‐high performance liquid chromatography–mass spectrometry (UPLC‐MS/MS) method was developed and validated for the quantification of 10 major active constituents in rat urine after oral administration of Shensong Yangxin Capsule (SSYX) using diazepam as an internal standard (IS). The urine samples were pretreated and extracted by solid‐phase extraction prior to UPLC. Chromatographic separation was achieved on a Waters C 18 (2.1 × 50 mm, 1.7 µm) column using a gradient elution program with 0.1% formic acid aqueous solution and acetonitrile at a flow rate of 0.4 mL/min. Detection and quantitation were accomplished by a hybrid quadrupole mass spectrometer using electrospray ionization source and multiple reaction monitoring in the positive ionization mode. The mass transition ion‐pairs ( m / z ) for quantitation were all optimized and the total run time was 4.50 min. The specificity, linearity, accuracy, precision, recovery, matrix effect and stabilities were all validated for the analytes in urine samples. The validation results indicated that this method was simple, rapid, specific and reliable. The proposed method was successfully applied to investigate the urinary excretion kinetics of 10 compounds in rat after oral administration of SSYX. Copyright © 2013 John Wiley & Sons, Ltd.