z-logo
Premium
Simultaneous determination of morniflumate and its major active metabolite, niflumic acid, in human plasma by high‐performance liquid chromatography in stability and pharmacokinetic studies
Author(s) -
Cho HeaYoung,
Park GeunKyeong,
Lee YongBok
Publication year - 2013
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.2940
Subject(s) - chemistry , niflumic acid , chromatography , high performance liquid chromatography , metabolite , monobasic acid , detection limit , active metabolite , potassium phosphate , extraction (chemistry) , organic chemistry , biochemistry
A rapid, sensitive and stable high‐performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of morniflumate and its major active metabolite, niflumic acid, in human plasma. HPLC analysis was carried out using a 5 µm particle size, C 18 ‐bonded silica column with a mixture of acetonitrile and 0.005  m potassium phosphate monobasic in water (60:40, v/v) as the mobile phase and UV detection at 287 nm. The method involved the treatment with 50 μL of 0.4  m hydrochloric acid for the stability of morniflumate, extraction with diethylether and evaporation to dryness under a nitrogen stream. The lower limit of quantitation for morniflumate and niflumic acid was 50 and 500 ng/mL, respectively. The calibration curves for morniflumate and niflumic acid were linear over the concentration range of 50–20,000 ng/mL and 500–50,000 ng/mL, respectively, with correlation coefficients greater than 0.9995 and inter‐ or intra‐batch coefficients of variation not exceeding 13.79%. The variability (percentage difference) of incurred sample re‐analysis did not exceed 11.72% and all of the repeat samples fell within 20% of the mean value. This assay procedure was applied successfully to an examination of the pharmacokinetics of morniflumate and its metabolite, niflumic acid, in human subjects. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here