z-logo
Premium
Microextraction by packed sorbent and liquid chromatography–tandem mass spectrometry as a tool for quantification of peptides in plasma samples: determination of sensory neuron‐specific receptors agonist BAM8‐22 and antagonist BAM22‐8 in plasma samples
Author(s) -
Ashri Nadia Y.,
Daryanavard Mosayeb,
AbdelRehim Mohamed
Publication year - 2013
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.2806
Subject(s) - chromatography , chemistry , sorbent , extraction (chemistry) , mass spectrometry , divinylbenzene , sample preparation , chemometrics , adsorption , copolymer , organic chemistry , styrene , polymer
Microextraction by packed sorbent (MEPS) is a miniaturized, solid‐phase extraction (SPE) technique that works online with gas chromatography (GC) and liquid chromatography (LC). Not only is the automation process with MEPS advantageous, but the much smaller volumes of the samples, solvents and dead space in the system also provide other significant advantages such as the speed and the simplicity of the sample preparation process. In this study MEPS has been evaluated for quantification of sensory neuron‐specific receptors agonist (BAM8‐22). Owing to the instability of BAMs, the focus was on fast extraction and determination of the peptide online using LC‐MS/MS. Sorbents such as C2, C8 and ENV+ (hydroxylated polystyrene–divinylbenzene copolymer) were investigated in the present study. MEPS‐C8 gave the best results compared with C2 and ENV and it was used for the method validation. The calibration curve was obtained within the concentration range of 20.0–3045 nmol/L in plasma. The regression correlation coefficients for plasma samples were ≥0.99 for all runs ( n =  6). The between‐batch accuracy and precision for BAM8‐22 ranged from −13 to −2.0% and from 4.0 to 14%, respectively. Additionally, the accuracy and precision for BAM22‐8 ranged from −13 to 7.0% and from 3.0 to 12%, respectively. The present method was used for pharmacokinetic studies for BAMs in plasma samples. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here