z-logo
Premium
Validated LC‐MS/MS assay for the quantitative determination of nalbuphine in human plasma and its application to a pharmacokinetic study
Author(s) -
Cai LiJing,
Zhang Jun,
Wang XiuMei,
Zhu R. H.,
Yang Jian,
Zhang QiZhi,
Peng W. X.
Publication year - 2011
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.1601
Subject(s) - chromatography , chemistry , nalbuphine , selected reaction monitoring , ammonium acetate , electrospray ionization , detection limit , extraction (chemistry) , solid phase extraction , pharmacokinetics , formic acid , mass spectrometry , tandem mass spectrometry , high performance liquid chromatography , medicine , biochemistry , receptor , opioid
ABSTRACT A solid‐phase extraction–liquid chromatographic–tandem mass spectrometry method for the determination of nalbuphine concentrations in human plasma has been developed. Samples (1 mL) were extracted using a Strata™‐X solid phase extraction cartridges. Chromatographic separation of nalbuphine and naloxone (internal standard) was achieved on a Phenomenex Kinetex PFP (2.6 μm, 100 A, 100 × 2.1 mm) column using a mobile phase consisting of 0.1% formic acid, 15 mM ammonium acetate in deionized water and acetonitrile (60:40, v/v). The flow rate was 0.3 mL/min and the total run time was 2 min. Detection of the analytes was achieved using positive ion electrospray ionization via multiple reactions monitoring mode. The mass transitions were m / z 358 → 340 for nalbuphine and m / z 328 → 310 for naloxone. The assay was linear over the concentration range 0.50–500.00 ng/mL, with correlation coefficients ≥0.995. The lower limit of quantitation was set at 0.5 ng/mL plasma based on an average signal‐to‐noise ratio of 44.79. The intra‐ and inter‐day precision was less than 8.07% in terms of relative standard deviation and accuracy ranged from 94.97 to 106.29% at all quality control levels. The method was applied successfully to determine nalbuphine concentrations in human plasma samples obtained from subjects receiving intravenous administration of nalbuphine. The method is rapid, sensitive, selective and directly applicable to human pharmacokinetic studies involving nalbuphine. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here