Premium
Determination of 3‐hydroxy pterocarpan, a novel osteogenic compound in rat plasma by liquid chromatography–tandem mass spectrometry: application to pharmacokinetics study
Author(s) -
Manickavasagam Lakshmi,
Gupta Sonal,
Mishra Smriti,
Kumar Amit,
Raghuvanshi Ashutosh,
Goel Atul,
Singh Divya,
Jain Girish Kumar
Publication year - 2011
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.1527
Subject(s) - chemistry , chromatography , detection limit , electrospray ionization , mass spectrometry , selected reaction monitoring , extraction (chemistry) , pharmacokinetics , liquid chromatography–mass spectrometry , triple quadrupole mass spectrometer , electrospray , tandem mass spectrometry , analytical chemistry (journal) , medicine
Abstract A rapid, sensitive and selective LC‐MS/MS method for the quantitative analysis of 3‐hydroxy pterocarpan (S006‐1709) in female rat plasma has been developed and validated. A Discovery RP 18 column was used for the chromatographic elution using acetonitrile and 0.1% acetic acid in water as mobile phase (80:20 v/v) at the flow rate of 0.5 mL/min. MS/MS analysis was performed using a triple quadrupole mass spectrometer with electrospray ionization in negative ion mode using biochanin as an internal standard (IS). Extraction of S006‐1709 and IS from rat plasma was done by liquid–liquid extraction method using diethyl ether. The LC‐MS/MS method was sensitive with 1.95 ng/mL as the limit of detection and 3.9 ng/mL as the lower limit of quantification. The method was linear in the concentration range of 3.9–1000 ng/mL. The percentage bias for intraday and interday accuracy was not greater than 4.2 and the %RSD for intraday and interday precision was not greater than 13.2. The recoveries of S006‐1709 and IS were 73.9–79.3 and 85.7%, respectively. S006‐1709 was found to be stable in various stability studies. The validated LC‐MS/MS method was successfully applied for the oral pharmacokinetics study of S006‐1709 at 10 mg/kg in female Sprague–Dawley rats. Copyright © 2010 John Wiley & Sons, Ltd.