z-logo
Premium
In vitro and in vivo studies of androst‐4‐ene‐3,6,17‐trione in horses by gas chromatography–mass spectrometry
Author(s) -
Leung Gary N. W.,
Tang Francis P. W.,
Wan Terence S. M.,
Wong Colton H. F.,
Lam Kenneth K. H.,
Stewart Brian D.
Publication year - 2010
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.1358
Subject(s) - chemistry , chromatography , in vivo , ene reaction , mass spectrometry , in vitro , gas chromatography–mass spectrometry , gas chromatography , organic chemistry , biochemistry , microbiology and biotechnology , biology
This paper describes the application of gas chromatography–mass spectrometry (GC‐MS) for in vitro and in vivo studies of 6‐OXO in horses, with a special aim to identify the most appropriate target metabolite to be monitored for controlling the administration of 6‐OXO in racehorses. In vitro studies of 6‐OXO were performed using horse liver microsomes. The major biotransformation observed was reduction of one keto group at the C3 or C6 positions. Three in vitro metabolites, namely 6α‐hydroxyandrost‐4‐ene‐3,17‐dione (M1), 3α‐hydroxyandrost‐4‐ene‐6,17‐dione (M2a) and 3β‐hydroxyandrost‐4‐ene‐6,17‐dione (M2b) were identified. For the in vivo studies, two thoroughbred geldings were each administered orally with 500 mg of androst‐4‐ene‐3,6,17‐trione (5 capsules of 6‐OXO ® ) by stomach tubing. The results revealed that 6‐OXO was extensively metabolized. The three in vitro metabolites (M1, M2a and M2b) identified earlier were all detected in post‐administration urine samples. In addition, seven other urinary metabolites, derived from a further reduction of either one of the remaining keto groups or one of the remaining keto groups and the olefin group, were identified. These metabolites included 6 α ,17 β ‐dihydroxyandrost‐4‐en‐3‐one (M3a), 6,17‐dihydroxyandrost‐4‐en‐3‐one (M3b and M3c), 3 β ,6 β ‐dihydroxyandrost‐4‐en‐17‐one (M4a), 3,6‐dihydroxyandrost‐4‐en‐17‐one (M4b), 3,6‐dihydroxyandrostan‐17‐one (M5) and 3,17‐dihydroxyandrostan‐6‐one (M6). The longest detection time observed in urine was up to 46 h for the M6 metabolite. For blood samples, the peak 6‐OXO plasma concentration was observed 1 h post administration. Plasma 6‐OXO decreased rapidly and was not detectable 12 h post administration. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here