z-logo
Premium
Development and validation of an analytical method for the quantification of cytochrome c in skin transport studies
Author(s) -
Bachhav Yogeshwar G.,
Kalia Yogeshvar N.
Publication year - 2010
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.1356
Subject(s) - chemistry , chromatography , cytochrome , biochemistry , enzyme
A simple isocratic HPLC method for the quantification of Cytochrome c in skin permeation samples was developed and validated. The mobile phase comprised a 41 : 59 mixture of an organic phase A (0.1% trifluoroacetic acid in a 90 : 10 mixture of MeCN–H 2 O) and an aqueous phase B (0.1% trifluoroacetic acid in H 2 O). The Cytochrome c retention and run times were 2.62 and 8.0 min, respectively—much shorter than those for existing gradient methods. The response was accurate, precise and linear from 2.5 to 25 μg/mL. The mean recoveries for intra‐day and inter‐day analysis ranged from 88.5 to 103.8% and the RSD varied from 0.05 to 1.55%. The assay was used to quantify transport of Cytochrome c across intact and laser‐microporated porcine skin in vitro . Cytochrome c permeation and the amount of protein retained within the membrane over 24 h were quantified as a function of the number of micropores. Although no Cytochrome c permeation was observed across intact skin, laser microporation enabled delivery of 22.9 ± 3.3 and 56.0 ± 15.9 μg/cm 2 of the protein across skin samples with 300 and 1800 micropores, respectively. In conclusion, the HPLC method provided a fast, efficient means to quantify Cytochrome c in samples from skin transport studies. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom