z-logo
Premium
Salting‐out assisted liquid/liquid extraction with acetonitrile: a new high throughput sample preparation technique for good laboratory practice bioanalysis using liquid chromatography–mass spectrometry
Author(s) -
Zhang Jun,
Wu Huaiqin,
Kim Elaine,
ElShourbagy Tawakol A.
Publication year - 2009
Publication title -
biomedical chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 65
eISSN - 1099-0801
pISSN - 0269-3879
DOI - 10.1002/bmc.1135
Subject(s) - bioanalysis , acetonitrile , chemistry , chromatography , sample preparation , reagent , salting out , extraction (chemistry) , liquid–liquid extraction , aqueous solution , liquid chromatography–mass spectrometry , mass spectrometry , organic chemistry
Abstract Acetonitrile, an organic solvent miscible with aqueous phase, has seen thousands of publications in the literature as an efficient deproteinization reagent. The use of acetonitrile for liquid–liquid extraction (LLE), however, has seen very limited application due to its miscibility with aqueous phase. The interest in LLE with acetonitrile has been pursued and reported in the literature by significantly lowering the temperature of the mixture or increasing the salt concentration in the mixture of acetonitrile and aqueous phase, resulting in the separation of the acetonitrile phase from aqueous phase, as observed in conventional LLE. However, very limited application of these methods has been reported. The throughput was limited. In this report, we report a new sample preparation technique, salting‐out assisted liquid–liquid extraction with acetonitrile, for high‐thoughput good laboratory practice sample analysis using LCMS, Two compounds from an approved drug, Kaletra ® , were used to demonstrate the extractability of drugs from human plasma matrix. Magnesium sulfate was used as the salting‐out reagent. Extracts were diluted and then injected into a reversed phase LC‐MS/MS system directly. One 96‐well plate was extracted with this new approach to evaluate multiple parameters of a good laboratory practice analytical method. Results indicate that the method is rapid, reliable and suitable for regulated bioanalysis. With minimal modification, this approach has been used for high‐throughput good laboratory practice analysis of a number of compounds under development at Abbott. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here