z-logo
Premium
Nonviral gene delivery to T cells with Lipofectamine LTX
Author(s) -
Harris Emily,
Zimmerman Devon,
Warga Eric,
Bamezai Anil,
Elmer Jacob
Publication year - 2021
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.27686
Subject(s) - jurkat cells , transfection , lipofectamine , gene delivery , microbiology and biotechnology , biology , transduction (biophysics) , genetic enhancement , viral vector , cell culture , t cell , gene , vector (molecular biology) , immunology , recombinant dna , genetics , immune system , biochemistry
Retroviral gene delivery is widely used in T cell therapies for hematological cancers. However, viral vectors are expensive to manufacture, integrate genes in semirandom patterns, and their transduction efficiency varies between patients. In this study, several nonviral gene delivery vehicles, promoters, and additional variables were compared to optimize nonviral transgene delivery and expression in both Jurkat and primary T cells. Transfection of Jurkat cells was maximized to a high efficiency (63.0% ± 10.9% EGFP +  cells) by transfecting cells with Lipofectamine LTX in X‐VIVO 15 media. However, the same method yielded a much lower transfection efficiency in primary T cells (8.1% ± 0.8% EGFP + ). Subsequent confocal microscopy revealed that a majority of the lipoplexes did not enter the primary T cells, which might be due to relatively low expression levels of heparan sulfate proteoglycans detected via messenger RNA‐sequencing. Pyrin and HIN (PYHIN) DNA sensors (e.g., AIM2 and IFI16) that can induce apoptosis or repress transcription after binding cytoplasmic DNA were also detected at high levels in primary T cells. Therefore, transfection of primary T cells appears to be limited at the level of cellular uptake or DNA sensing in the cytoplasm. Both of these factors should be considered in the development of future viral and nonviral T cell gene delivery methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here