z-logo
Premium
Construction of pancreas–muscle–liver microphysiological system (MPS) for reproducing glucose metabolism
Author(s) -
Lee Dong Wook,
Lee Seung Hwan,
Choi Nakwon,
Sung Jong Hwan
Publication year - 2019
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.27151
Subject(s) - pancreas , biology , artificial pancreas , insulin , carbohydrate metabolism , metabolism , organ on a chip , diabetes mellitus , glucose homeostasis , microbiology and biotechnology , endocrinology , type 1 diabetes , insulin resistance , nanotechnology , materials science , microfluidics
Although in vitro models are widely accepted experimental platforms, their physiological relevance is often severely limited. The limitation of current in vitro models is strongly manifested in case of diseases where multiple organs are involved, such as diabetes and metabolic syndrome. Microphysiological systems (MPS), also known as organ‐on‐a‐chip technology, enable a closer approximation of the human organs and tissues, by recreating the tissue microenvironment. Multiorgan MPS, also known as multiorgan‐on‐a‐chip or body‐on‐a‐chip, offer the possibility of reproducing interactions between organs by connecting different organ modules. Here, we designed a three‐organ MPS consisting of pancreas, muscle, and liver, to recapitulate glucose metabolism and homeostasis by constructing a mathematical model of glucose metabolism, based on experimental measurement of glucose uptake by muscle cells and insulin secretion by pancreas cells. A mathematical model was used to modify the MPS to improve the physiological relevance, and by adding the liver model in the mathematical model, physiological realistic glucose and insulin profiles were obtained. Our study may provide a methodological framework for developing multiorgan MPS for recapitulating the complex interaction between multiple organs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here