z-logo
Premium
Sensitive detection of glucagon aggregation using amyloid fibril‐specific antibodies
Author(s) -
Stimple Samuel D.,
Kalyoncu Sibel,
Desai Alec A.,
Mogensen Jesper E.,
Spang Lotte T.,
Asgreen Désirée J.,
Staby Arne,
Tessier Peter M.
Publication year - 2019
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.26994
Subject(s) - thioflavin , chemistry , glucagon , immunoassay , antibody , amyloid (mycology) , fibril , biochemistry , peptide , protein aggregation , biophysics , biology , hormone , medicine , inorganic chemistry , disease , immunology , alzheimer's disease , pathology
Sensitive detection of protein aggregates is important for evaluating the quality of biopharmaceuticals and detecting misfolded proteins in several neurodegenerative diseases. However, it is challenging to detect extremely low concentrations (<10 ppm) of aggregated protein in the presence of high concentrations of soluble protein. Glucagon, a peptide hormone used in the treatment of extreme hypoglycemia, is aggregation‐prone and forms amyloid fibrils. Detection of glucagon fibrils using conformation‐specific antibodies is an attractive approach for identifying such aggregates during process and formulation development. Therefore, we have used yeast surface display and magnetic‐activated cell sorting to sort single‐chain antibody libraries to identify antibody variants with high conformational specificity for glucagon fibrils. Notably, we find several high‐affinity antibodies that display excellent selectivity for glucagon fibrils, and we have integrated these antibodies into a sensitive immunoassay. Surprisingly, the sensitivity of our assay—which involves direct (nonantibody mediated) glucagon immobilization in microtiter plates—can be significantly enhanced by pretreating the microtiter plates with various types of globular proteins before glucagon immobilization. Moreover, increased total concentrations of glucagon peptide also significantly improve the sensitivity of our assay, which appears to be due to the strong seeding activity of immobilized fibrils at high glucagon concentrations. Our final assay is highly sensitive (fibril detection limit of ~0.5–1 ppm) and is >20 times more sensitive than detection using a conventional, amyloid‐specific fluorescent dye (Thioflavin T). We expect that this type of sensitive immunoassay can be readily integrated into the drug development process to improve the generation of safe and potent peptide therapeutics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here