Premium
Determination of effective diffusion coefficients and distribution constants in polysaccharide gels with non‐steady‐state measurements
Author(s) -
Øyaas Jorun,
Storrø Ivar,
Lysberg Magne,
Svendsen Hallvard,
Levine David W.
Publication year - 1995
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260470412
Subject(s) - diffusion , polysaccharide , distribution (mathematics) , steady state (chemistry) , chemistry , thermodynamics , analytical chemistry (journal) , chromatography , mathematics , organic chemistry , physics , mathematical analysis
A non‐steady‐state method has been used for determining the effective diffusion coefficient, D e , and a distribution constant, K i , of small molecules in alginate gel beads. A mathematical model based on Pick's law and includingexternal film diffusion resistance describe the diffusion process. Criticalexperimental parameters for the estimation of D e and K i , for both one‐ and two‐parameter methods were the initial solute concentration in the bulk liquid, the void fraction inthe reactor, and the experimental starting point. In our analysis, the two‐parameter method is preferable. Incorporation of an estimate of the film resistance into the overall model increased the estimated values of D e significantly and improved the stability of the term over a range of reactor agitation rates. © 1995 John Wiley & Sons Inc.