z-logo
Premium
Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p ‐xylene by two Pseudomonas isolates.
Author(s) -
Chang MyungKeun,
Voice Thomas C.,
Criddle Craig S.
Publication year - 1993
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260411108
Subject(s) - cometabolism , toluene , chemistry , benzene , xylene , substrate (aquarium) , biodegradation , strain (injury) , pseudomonas , organic chemistry , bacteria , bioremediation , biology , ecology , genetics , anatomy
Two Pseudomonas species (designated strains B1 and X1) were isolated from an aerobic pilot‐scale fluidized bed reactor treating groundwater containing benzene, toluene, and p ‐xylene (BTX). Strain B1 grew with benzene and toluene as the sole sources of carbon and energy, and it cometabolized p ‐xylene in the presence of toluene. Strain X1 grew on toluene and p ‐xylene, but not benzene. In single substrate experiments, the appearance of biomass lagged the consumption of growth substrates, suggesting that substrate uptake may not be growth‐rate limiting for these substrates. Batch tests using paired substrates (BT, TX, or BX) revealed competitive inhibition and cometabolic degradation patterns. Competitive inhibition was modeled by adding a competitive inhibition term to the Monod expression. Cometabolic transformation of nongrowth substrate ( p ‐xylene) by strain B1 was quantified by coupling xylene transformation to consumption of growth substrate (toluene) during growth and to loss of biomass during the decay phase. Coupling was achieved by defining two transformation capacity terms for the cometabolizing culture: one that relates consumption of growth substrate to the consumption of nongrowth substrate, and second that relates consumption of biomass to the consumption of nongrowth substrate. Cometabolism increased decay rates, and the observed yield for strain B1 decreased in the presence of p ‐xylene. © 1993 Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here