Premium
Rheological properties of mammalian cell culture suspensions: Hybridoma and HeLa cell lines
Author(s) -
Shi Yaun,
Ryu Dewey D. Y.,
Ballica Rabia
Publication year - 1993
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260410709
Subject(s) - hela , cell culture , rheology , cell , chemistry , suspension culture , microbiology and biotechnology , biology , biochemistry , materials science , genetics , composite material
Data on viscous (η′) and elastic (η″) components of the complex viscosity versus oscillatory angular frequency (0.01 to 4.0 rad/s) with increasing strains were obtained for hybridoma cell (62′D3) and HeLa cell (S3) suspensions in PBS at 0.9 (mL/mL) cell volume fraction using a Weissenberg rheogoniometer equipped with two parallel plate geometry at ambient temperature. Both cell suspensions exhibited shear thinning behavior. From the measured viscoelastic properties, the yield stress was calculated. Hybridoma cell suspension (15 μm as the mean diameter of cells) showed the yield stress at 550 dyne/cm 2 that was 1.8 times higher than the value of HeLa cell suspension (22 μm mean diameter) as measured at the oscillatory angular frequency, 4.0 rad/s. The apparent viscosities of HeLa cell suspension at four concentrations and varying steady shear rate were also determined using the Brookfield rotational viscometer. The yield stress to steady shear test was about 130 dyne/cm 2 for HeLa cell suspension at 0.9 (mL/mL) cell volume fraction. The apparent viscosity was in the range about 1 ∼ 1000 Poise depending on the cell concentration and shear rate applied. A modified semiempirical Mooney equation, \documentclass{article}\pagestyle{empty}\begin{document}$ \eta = \eta _0 \exp [K\dot \gamma ^{ - \beta } \phi /(1 - K''\sigma \phi _c /D)] $\end{document} was derived based on the cell concentration, the cell morphology, and the steady shear rate. The β, shear rate index, was estimated as 0.159 in the range of shear rate, 0.16 to 22.1 s −1 , for the cell volume fractions from 0.6 to 0.9 (mL/mL). In this study, the methods of determining the shear sensitivity and the viscous and the elastic components of mammalian cell suspensions are described under the steady shear field. © 1993 John Wiley & Sons, Inc.