Premium
Optimizing the sample size and the retention parameters to achieve maximum production rates for enantiomers in chiral chromatography
Author(s) -
Jacobson Stephen C.,
Felinger Attila,
Guiochon Georges
Publication year - 1992
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260401011
Subject(s) - chromatography , chemistry , capacity factor , elution , enantiomer , phase (matter) , analytical chemistry (journal) , solvent , high performance liquid chromatography , stereochemistry , organic chemistry
The optimum experimental conditions (sample size and mobile phase composition) are calculated for maximum production rate of either one of two enantiomers contained in feeds of different compositions (1/1, 1/10, and 10/1). The products are obtained at 99% purity. The calculations use the equilibrium‐dispersive model of chromatography and the equilibrium isotherms determined experimentally from the rear, diffuse boundary of overloaded elution profiles. The production rate measured experimentally under the optimum conditions calculated agree with 4% of the calculated values. There is an optimum value for the retention factor which is higher than predicted by a model assuming constant separation factor, because both separation factor and retention decrease with increasing organic solvent concentration in the mobile phase. © 1992 John Wiley & Sons, Inc.