Premium
Hydrolysis of penicillin G by combination of immobilized penicillin acylase and electrodialysis
Author(s) -
Ishimura Fumihiro,
Suga KenIchi
Publication year - 1992
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260390208
Subject(s) - phenylacetic acid , penicillin , chemistry , hydrolysis , chromatography , substrate (aquarium) , penicillin amidase , nuclear chemistry , organic chemistry , biochemistry , antibiotics , oceanography , geology
Phenylacetic acid, as inhibitory product, was formed from a hydrolysis of penicillin G by immobilized penicillin acylase. In this article, electrodialysis was applied to remove phenylacetic acid continuously from the reaction mixture and to enhance an efficiency of the reaction. When 268 and 537 m M of penicillin G solution were used as the substrate, the concentration of phenylacetic acid in the reaction mixture could be maintained at less than 81 and 126 m M , respectively, and eventually, 86% and 88% of phenylacetic acid produced were removed from the reaction mixture at the end of the hydrolysis, respectively. Times required to reach 96% and 94.8% conversion from 268 and 537 m M of initial penicillin G could be reduced to 65% and 64% respectively, by means of electrodialysis; while 3.0% and 4.3% of initial penicillin G of 268 and 537 m M were permeated out of the reaction chamber during the hydrolysis, respectively. However, a loss of penicillin G by permeation could be reduced from 4.3% to 3.4% by a repeated addition of penicillin G.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom