z-logo
Premium
A general model for aerobic yeast growth: Batch growth
Author(s) -
Barford J. P.
Publication year - 1990
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260350908
Subject(s) - yeast , biochemistry , sugar , cellular respiration , saccharomyces cerevisiae , biology , mitochondrion , respiratory chain , growth rate , metabolism , chemistry , geometry , mathematics
Abstract A general model for aerobic yeast growth in batch culture is presented. It is based on the concept that the aerobic metabolism of all yeasts is determined by the relative sizes of the transport rate of sugar into the cell and the transport rate of respiratory intermediates into the mitochondrion. If the rate of sugar uptake rate exceeds the rate of transport of respiratory intermediates into the mitochondrion (as in Saccharomyces cerevisiae, S. uvarum , and S. pombe ), the metabolism exhibits the features of ethanol excretion and limited specific oxygen uptake rate. If the rate of transport of respiratory intermediates into the mitochondrion is of the same order as the transport of sugar into the cell (as in Candida utilis ), the metabolism is characterized by little or no ethanol excretion and a much higher specific oxygen uptake rate. Batch data from an extensive range of yeast and carbon sources is used to illustrate the use of this model. The ability of this model to fit such an extensive range of experimental data suggests that it can be used as a generalized model for aerobic yeast growth.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here