Premium
Biotransformation of benzaldehyde by Saccharomyces cerevisiae : Characterization of the fermentation and toxicity effects of substrates and products
Author(s) -
Long A.,
Ward O. P.
Publication year - 1989
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260340708
Subject(s) - benzaldehyde , biotransformation , yeast , acetaldehyde , fermentation , chemistry , pyruvate decarboxylase , food science , ethanol , biochemistry , alcohol dehydrogenase , enzyme , catalysis
Although higher initial rates of phenylacetyl carbinol formation were observed in fermentations containing a high starting benzaldehyde level, a massive reduction in yeast viability was observed resulting in early cessation of production formation. Pulse feeding to maintain lower benzaldehyde concentrations resulted in a lower initial reaction rate, but prolonged yeast viability and the biotransformation. This resulted in higher overall product tilers. As benzaldehyde concentration was increased, yeast growth rate was reduced (0.5 g/L), inhibited (1–2 g/L), or cell viability reduced (3 g/L). Benzaldehyde appeared to alter the cell permeability barrier to substrates and products. Reductions in yeast biomass levels and especially protein and lipid content were observed during the biotransformation. The effects of benzaldehyde and reaction products on yeast pyruvate decarboxylase and alcohol dehydrogenase stability were determined. Homogenized yeast cells produced similar phenylacetyl carbinol levels to whole yeast only if supplemented with thiamine pyrophosphate and magnesium.