z-logo
Premium
Mathematical modeling for mixed culture growth of two bacterial populations with opposite substrate preferences
Author(s) -
Kim Sun U.,
Kim Daniel C.,
Dhurjati Prasad
Publication year - 1988
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260310208
Subject(s) - substrate (aquarium) , biological system , biochemical engineering , biology , ecology , engineering
An unstructured mathematical model is proposed for mixed culture growth of two different bacterial species that exhibit “opposite” substrate preferences in response to the “same” environmental conditions. The model incorporates enzymatic control mechanisms such as induction, repression, and inhibition in the microorganisms as manifested in their preferential utilization of substrates and microbial interactions such as amensalism and competition. The model predicts cell mass, substrate concentrations, dissolved oxygen tension, as well as key enzyme levels. The predictions of the model are compared with experimental data for pure culture growth and for mixed culture growth on two substrates, glucose and citrate, in a batch reactor.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here