Premium
Methanogenesis from volatile fatty acids in downflow stationary fixed‐film reactor
Author(s) -
Bhadra Amit,
Scharer Jeno M.,
MooYoung Murray
Publication year - 1987
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260300223
Subject(s) - chemistry , carbon dioxide , woodchips , methane , methanogenesis , biogas , ammonia , nitrogen , carbon fibers , pulp and paper industry , chromatography , organic chemistry , waste management , materials science , composite number , engineering , composite material
Methanogenesis was studied in downflow stationary fixed‐film bioreactors. The support materials in this study included ceramic Raschig rings, hardwood chips, and sized charcoal. The performances of these support materials have been compared using both synthetic acid mixture and acid products obtained from paper mill sludge. Woodchips appeared to be the most promising support material: The maximum methane productivity of 3.56 L/L day at a nominal retention time of 0.78 day was obtained using initial total acid concentrations of 9.125 g/L. Higher productivity was achieved at the cost of efficiency of the process in terms of conversion of acids. From nitrogen balances, it was deduced that ammonia supplemented methane generation by supplying hydrogen for there duction of carbon dioxide. An ionic balance was developed to ascertain the relationship between the composition and the pH of the liquid and the mole fraction of carbon dioxide in the gas phase. From these ionic balance equations, it was possible to predict the gas phase composition at various retention times. The maximum error between the computed and the experimental values was less than 13%.