Premium
Enzymic saccharification of pretreated wheat straw
Author(s) -
Vallander Lars,
Eriksson KarlErik
Publication year - 1985
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260270515
Subject(s) - cellulase , trichoderma reesei , hydrolysis , chemistry , hydrolysate , enzymatic hydrolysis , substrate (aquarium) , straw , adsorption , chromatography , yield (engineering) , desorption , ethanol , enzyme , cellulose , biochemistry , food science , organic chemistry , inorganic chemistry , materials science , biology , ecology , metallurgy
Studies of pretreatment of wheat and its subsequent saccharification by Trichoderma reesei cellulases are reported. Steam explosion was found to be the most effective of the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentration on the rate and degree of hydrolysis. Significant inhibition of the cellulases was observed when sugar concentrations were 6% or higher. This inhibition increased when glucose and ethanol were present simultaneously. Adsorption of enzymes to the substrate was followed during a 24‐h hydrolysis period. An initial rapid and extensive adsorption occurred, followed by a short desorption period that was followed in turn by a further increased adsorption peaking after 3 h. Intermediate removal of hydrolysate, particularly in combination with a second addition of enzyme, clearly improved the yield of saccharification compared to an uninterrupted hydrolysis over a 24‐h period. Thus, a 74% yield of reducing sugars was obtained. Furthermore, an increase in the amount of recoverable enzymes was observed under these conditions. Evidence is presented that suggests that a countercurrent technique, whereby free enzymes in recovered hydrolysate are adsorbed onto new substrate, may provide a means of recirculating dissolved enzymes.