z-logo
Premium
Use of a tapered fluidized bed as a Continuous bioreactor
Author(s) -
Scott Charles D.,
Hancher Charles W.
Publication year - 1976
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260181006
Subject(s) - fluidized bed , bioreactor , sparging , pressure drop , chemical engineering , chemistry , aqueous solution , chromatography , materials science , waste management , pulp and paper industry , organic chemistry , physics , engineering , thermodynamics
Reactor systems based on tapered fluidized beds are being developed for aqueous bioprocesses in which adhering microorganisms or immobilized active biological fractions are used. The use of a fluidized bed prevents biomass buildup, accommodates particulates in the feed stream, is compatible with gas sparging, and allows easy removal or addition of the active materials. The tapered reactor tends to stabilize the fluidized bed, thus allowing a much wider range of operating conditions. Preliminary experimental results and an empirical mathematical model of the tapered bed indicate that bed stability is associated with a decreasing velocity and void‐fraction profile up the bed and the pressure drop across the bed decreases with increasing flow rates. The tapered fluidized bed bioreactor is being evaluated for use in the enzymatic production of hydrogen, microbiological denitrification, and microbiological degradation of coal conversion aqueous waste streams. The enzyme catalyzed conversion of lactose to glucose and galactose was used in the evaluation of the reactor concept.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here