Premium
Virus interactions with membrane filters
Author(s) -
Cliver Dean O.
Publication year - 1968
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.260100612
Subject(s) - cellulose triacetate , membrane , adsorption , filtration (mathematics) , virus , chemistry , chromatography , cellulose , enterovirus , particle (ecology) , chemical engineering , biochemistry , biology , organic chemistry , virology , ecology , statistics , mathematics , engineering
A survey of interactions of membrane filters with viruses has included 28 types of membranes, 4 types of enteroviruses, and 1 reovirus. Losses of these viruses in filtration, due to adsorption to the filter membranes, appear to be governed by three factors: the chemical composition of the filter membrane, the ratio of pore diameter to the diameter of the virus particle, and the presence of substances, such as those occurring in serum, which interfere with adsorption. Membranes of cellulose triacetate and of certain other materials have a very low affinity for these viruses. Cellulose triacetate filters adsorb virtually none when the pore size exceeds the virus diameter by a factor of more than 3. At porosities nearer the virus diameter, even low‐affinity membranes adsorb large quantities of virus unless serum or some other additive interferes. Cellulose nitrate membranes, in the absence of interfering substances, adsorb enterovirus significantly at a pore size 285 times the virus diameter.