z-logo
Premium
On the model‐based optimization of secreting mammalian cell (GS‐NS0) cultures
Author(s) -
Kiparissides A.,
Pistikopoulos E. N.,
Mantalaris A.
Publication year - 2015
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.25457
Subject(s) - bioprocess , biochemical engineering , sensitivity (control systems) , computer science , process (computing) , production (economics) , mathematical optimization , process engineering , engineering , mathematics , electronic engineering , chemical engineering , economics , macroeconomics , operating system
The global bio‐manufacturing industry requires improved process efficiency to satisfy the increasing demands for biochemicals, biofuels, and biologics. The use of model‐based techniques can facilitate the reduction of unnecessary experimentation and reduce labor and operating costs by identifying the most informative experiments and providing strategies to optimize the bioprocess at hand. Herein, we investigate the potential of a research methodology that combines model development, parameter estimation, global sensitivity analysis, and selection of optimal feeding policies via dynamic optimization methods to improve the efficiency of an industrially relevant bioprocess. Data from a set of batch experiments was used to estimate values for the parameters of an unstructured model describing monoclonal antibody (mAb) production in GS‐NS0 cell cultures. Global Sensitivity Analysis (GSA) highlighted parameters with a strong effect on the model output and data from a fed‐batch experiment were used to refine their estimated values. Model‐based optimization was used to identify a feeding regime that maximized final mAb titer. An independent fed‐batch experiment was conducted to validate both the results of the optimization and the predictive capabilities of the developed model. The successful integration of wet‐lab experimentation and mathematical model development, analysis, and optimization represents a unique, novel, and interdisciplinary approach that addresses the complicated research and industrial problem of model‐based optimization of cell based processes. Biotechnol. Bioeng. 2015;112: 536–548. © 2014 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here