Premium
Application of high throughput pretreatment and co‐hydrolysis system to thermochemical pretreatment. Part 1: Dilute acid
Author(s) -
Gao Xiadi,
Kumar Rajeev,
DeMartini Jaclyn D.,
Li Hongjia,
Wyman Charles E.
Publication year - 2013
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.24751
Subject(s) - hydrolysis , chemistry , enzymatic hydrolysis , lignocellulosic biomass , slurry , rendering (computer graphics) , biomass (ecology) , sugar , chromatography , pulp and paper industry , organic chemistry , materials science , computer science , computer graphics (images) , oceanography , engineering , composite material , geology
Abstract Because conventional approaches for evaluating sugar release from the coupled operations of pretreatment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital for screening large numbers of lignocellulosic biomass samples to identify feedstocks and/or processing conditions that significantly improve performance and lower costs. Because dilute acid pretreatment offers many important advantages in rendering biomass highly susceptible to subsequent enzymatic hydrolysis, a high throughput pretreatment and co‐hydrolysis (HTPH) approach was extended to employ dilute acid as a tool to screen for enhanced performance. First, a single‐step neutralization and buffering method was developed to allow effective enzymatic hydrolysis of the whole pretreated slurry. Switchgrass and poplar were then pretreated with 0.5% and 1% acid loadings at a 5% solids concentration, the resulting slurry conditioned with the buffering approach, and the entire mixture enzymatically hydrolyzed. The resulting sugar yields demonstrated that single‐step neutralizing and buffering was capable of adjusting the pH as needed for enzymatic saccharification, as well as overcoming enzyme inhibition by compounds released in pretreatment. In addition, the effects of pretreatment conditions and biomass types on susceptibility of pretreated substrates to enzymatic conversion were clearly discernible, demonstrating the method to be a useful extension of HTPH systems. Biotechnol. Bioeng. 2013; 110: 754–762. © 2012 Wiley Periodicals, Inc.