z-logo
Premium
Comparison of two methods for designing calorimeters using stirred tank reactors
Author(s) -
Regestein Lars,
Giese Heiner,
Zavrel Michael,
Büchs Jochen
Publication year - 2013
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.24601
Subject(s) - continuous stirred tank reactor , bioreactor , heat transfer , heat transfer coefficient , scale up , nuclear engineering , process engineering , plug flow reactor model , scale (ratio) , heat capacity , thermodynamics , chemistry , materials science , chemical engineering , engineering , physics , organic chemistry , classical mechanics , quantum mechanics
Calorimetry is a robust method for online monitoring and controlling bioprocesses in stirred tank reactors. Up to now, reactor calorimeters have not been optimally constructed for pilot scale applications. Thus, the objective of this paper is to compare two different ways for designing reactor calorimeters and validate them. The “heat capacity” method based on the mass flow of the cooling liquid in the jacket was compared with the “heat transfer” method based on the heat transfer coefficient continuously measured in the cultivation of Escherichia coli VH33 in a 50 L stirred tank reactor. It was found that the values of the “heat transfer” method agreed very well with the calculated values from the oxygen consumption. By contrast, the curve of the “heat capacity” method deviated from that of the oxygen consumption calculated with the oxycaloric equivalent. In conclusion, the “heat transfer” method has been proven to have a higher degree of validity than the “heat capacity” method. Thus, it is a better and more robust means to measure heat generation of fermentations in stirred tank bioreactors on a pilot scale. Biotechnol. Bioeng. 2013; 110: 180–190. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here