Premium
A Kinetic Model for Simultaneous Saccharification and Fermentation of Avicel With Saccharomyces cerevisiae
Author(s) -
van Zyl Josebus M.,
van Rensburg Eugéne,
van Zyl Willem H.,
Harms Thomas M.,
Lynd Lee R.
Publication year - 2011
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.23000
Subject(s) - trichoderma reesei , cellobiose , cellulase , cellulose , chemistry , fermentation , hydrolysis , saccharomyces cerevisiae , ethanol fermentation , chromatography , biochemistry , yeast
This work describes a numerical model for predicting simultaneous saccharification and fermentation of Avicel, an insoluble crystalline cellulose polymer. Separate anoxic cultivations of 40 g/L glucose and 100 g/L Avicel were conducted to verify model predictions and obtain parameters to describe the reaction kinetics. Saccharification of Avicel was achieved with Trichoderma reesei cellulases from the enzyme preparation Spezyme CP with an enzyme loading of 10 FPU/g cellulose. Cultivations were supplemented with 50 IU/g cellulose of β‐glucosidase from Novozym 188 to prevent product inhibition by cellobiose. Saccharomyces cerevisiae MH‐1000 is a robust industrial strain and was used to ferment glucose to ethanol, glycerol, and carbon dioxide. The numerical model presented in this paper differs from previous models by separating the endoglucanase and exoglucanase enzyme kinetics and allowing for inhibitive site competition. Assuming all enzymes remain active and that each enzyme complex has a corresponding constant specific activity, the model is capable of predicting adsorbed enzyme concentrations with reasonable accuracy. Comparison of predicted values to experimental measurements indicated that the numerical model was capable of capturing the significant elements involved with cellulose conversion to ethanol. Biotechnol. Bioeng. 2011; 108:924–933. © 2010 Wiley Periodicals, Inc.