Premium
Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio
Author(s) -
Van Den Hende Sofie,
Vervaeren Han,
Saveyn Hans,
Maes Guy,
Boon Nico
Publication year - 2011
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.22985
Subject(s) - chemistry , photobioreactor , wastewater , bicarbonate , total inorganic carbon , carbon fibers , total organic carbon , sewage treatment , sucrose , nitrogen , settling , sequencing batch reactor , dissolved organic carbon , autotroph , environmental chemistry , biomass (ecology) , bioreactor , chemical oxygen demand , chromatography , carbon dioxide , environmental engineering , bacteria , food science , organic chemistry , materials science , biology , environmental science , ecology , genetics , composite number , composite material
Microalgal bacterial floc (MaB‐floc) reactors have been suggested as a more sustainable secondary wastewater treatment. We investigated whether MaB‐flocs could be used as tertiary treatment. Tertiary influent has a high inorganic/organic carbon ratio, depending on the efficiency of the secondary treatment. In this study, the effect of this inorganic/organic carbon ratio on the MaB‐flocs performance was determined, using three sequencing batch photobioreactors. The MaB‐flocs were fed with synthetic wastewater containing 84, 42, and 0 mg L −1 C‐KHCO 3 supplemented with 0, 42, 84 mg L −1 C‐sucrose, respectively, representing inorganic versus organic carbon. Bicarbonate significantly decreased the autotrophic index of the MaB‐flocs and resulted in poorly settling flocs. Moreover, sole bicarbonate addition led to a high pH of 9.5 and significant lower nitrogen removal efficiencies. Sucrose without bicarbonate resulted in good settling MaB‐flocs, high nitrogen removal efficiencies and neutral pH levels. Despite the lower chlorophyll a content of the biomass and the lower in situ oxygen concentration, 92–96% of the soluble COD‐sucrose was removed. This study shows that the inorganic/organic carbon ratio of the wastewater is of major importance and that organic carbon is requisite to guarantee a good performance of the MaB‐flocs for wastewater treatment. Biotechnol. Bioeng. 2011; 108:549–558. © 2010 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom