Premium
Glycoside hydrolases: Catalytic base/nucleophile diversity
Author(s) -
Vuong Thu V.,
Wilson David B.
Publication year - 2010
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.22838
Subject(s) - nucleophile , catalysis , glycoside hydrolase , chemistry , substrate (aquarium) , hydrolase , stereochemistry , carboxylate , enzyme , glycoside , function (biology) , combinatorial chemistry , biochemistry , biology , ecology , genetics
Recent studies have shown that a number of glycoside hydrolase families do not follow the classical catalytic mechanisms, as they lack a typical catalytic base/nucleophile. A variety of mechanisms are used to replace this function, including substrate‐assisted catalysis, a network of several residues, and the use of non‐carboxylate residues or exogenous nucleophiles. Removal of the catalytic base/nucleophile by mutation can have a profound impact on substrate specificity, producing enzymes with completely new functions. Biotechnol. Bioeng. 2010;107: 195–205. © 2010 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom