z-logo
Premium
Novel micro‐bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed‐batch CHO cultures
Author(s) -
Amanullah Ashraf,
Otero Jose Manuel,
Mikola Mark,
Hsu Amy,
Zhang Jinyou,
Aunins John,
Schreyer H. Brett,
Hope James A.,
Russo A. Peter
Publication year - 2010
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.22664
Subject(s) - bioreactor , process development , throughput , chinese hamster ovary cell , reproducibility , scalability , biochemical engineering , process (computing) , high throughput screening , cell culture , process engineering , batch processing , bioprocess , chemistry , computer science , chromatography , biology , biochemistry , chemical engineering , engineering , organic chemistry , telecommunications , database , wireless , genetics , programming language , operating system
With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench‐top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high‐throughput (HT) technology for process development. One such high‐throughput system is the SimCell™ platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell™ micro‐bioreactor technology for fed‐batch cultivation of a GS‐CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas‐permeable chambers based on a micro‐fluidic design, with six micro‐bioreactors (MBs) per micro‐bioreactor array (MBA). Online, non‐invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3‐ and 100‐L bioreactor scales. The results of the study demonstrate that the SimCell™ platform operated under fed‐batch conditions could support viable cell concentrations up to least 12 × 10 6  cells/mL. In addition, both intra‐MB (MB to MB) as well as intra‐MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra‐MB and ‐MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) × 100. The % CV values for most intra‐MB and intra‐MBA measurements were generally under 10% and the intra‐MBA values were slightly lower than those for intra‐MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench‐top, and pilot scale bioreactor cultivations and found to be within ±20% of the historical averages. Biotechnol. Bioeng. 2010; 106: 57–67. © 2010 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here