z-logo
Premium
Life‐cycle kinetic model for endospore‐forming bacteria, including germination and sporulation
Author(s) -
Park Seongjun,
Rittmann Bruce E.,
Bae Wookeun
Publication year - 2009
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.22456
Subject(s) - spore , aeration , germination , endospore , substrate (aquarium) , biomass (ecology) , seeding , bacterial growth , bacteria , chemistry , vegetative reproduction , spore germination , oxygen , botany , biology , ecology , agronomy , organic chemistry , genetics
We develop a mechanistic life‐cycle model for endospore‐forming bacteria (EFB) and test the model with experiments with a Bacillus mixed culture. The model integrates and quantifies how sporulation and germination are triggered by depletion or presence of a limiting substrate, while both substrates affect the rate of vegetative growth by a multiplicative model. Kinetic experiments show the accumulation of small spherical spores after the triggering substrate is depleted, substantially more rapid decay during sporulation than for normal decay of vegetative cells, and a higher specific substrate utilization rate for the germinating cells than that for growth of vegetative cells. Model simulations capture all of these experimental trends. According to model predictions, when a batch reactor is started, seeding with EFB spores instead of active EFB delays the onset of rapid chemical oxygen demand (COD) utilization and biomass growth, but the end points are the same. Simulated results with low aeration intensity show that germination can consume some substrate without dissolved oxygen (DO) depletion. Biotechnol. Bioeng. 2009; 104: 1012–1024. © 2009 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here