z-logo
Premium
Options for biochemical production of 4‐hydroxybutyrate and its lactone as a substitute for petrochemical production
Author(s) -
Efe C.,
Straathof Adrie J.J.,
van der Wielen Luuk A.M.
Publication year - 2007
Publication title -
biotechnology and bioengineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 189
eISSN - 1097-0290
pISSN - 0006-3592
DOI - 10.1002/bit.21709
Subject(s) - nad+ kinase , yield (engineering) , chemistry , candida antarctica , metabolic pathway , biochemistry , petrochemical , enzyme , stereochemistry , lipase , organic chemistry , thermodynamics , physics
Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4‐HB are analyzed. The calculations reveal that when the pathways are NAD + dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4‐HB yields at equilibrium. For NADP + dependent pathways the calculated yield of 4‐HB improves, up to almost 100%. In the second part of this study, continuous removal of 4‐HB from the solution is considered to shift SSA conversion into 4‐HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4‐HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in‐vivo during 4‐HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392–1406. © 2007 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here